Emission Service

Home » Services » Emission Service

The Emission System

The purpose of the emission system is to control the emissions and exhaust from your vehicle. This system substantially reduces harmful gases and helps maintain quiet operation. The exhaust system contains a series of integrated components including the catalytic converter, muffler, and tailpipe.

The Components of the Emission System

Your emission system runs almost the entire length of your vehicle. And in the process of moving exhaust away from the engine and passenger cabin, it analyzes the gases, refines them into water vapor and less-harmful gases, and directs them through dampers to reduce noise. Below, you'll find each component of the system with a brief description of the job it does.

Exhaust Pipe - Routes exhaust gases from the front of the vehicle to the back.

Oxygen Sensor - Analyzes the amount of oxygen in the exhaust gases and sends the information to the engine control computer for adjustments to the air/fuel mixture.

Catalytic Converter - Removes carbon monoxide, oxides of nitrogen, and unburned fuel from exhaust gases. Required by law to help cars meet federal emission guidelines. The catalytic converter looks like a muffler. It is located in the exhaust system ahead of the muffler. Inside the converter are pellets or a honeycomb made of platinum or palladium. The platinum or palladiums are used as a catalyst (a catalyst is a substance used to speed up a chemical process). As hydrocarbons or carbon monoxide in the exhaust are passed over the catalyst, it is chemically oxidized or converted to carbon dioxide and water. As the converter works to clean the exhaust, it develops heat. The dirtier the exhaust, the harder the converter works and the more heat that is developed. In some cases, the converter can be seen to glow from excessive heat. If the converter works this hard to clean a dirty exhaust it will destroy itself. Also, leaded fuel will put a coating on the platinum or palladium and render the converter ineffective.

PCV Valve - The purpose of the positive crankcase ventilation (PCV) system, is to take the vapors produced in the crankcase during the normal combustion process, and redirecting them into the air/fuel intake system to be burned during combustion. These vapors dilute the air/fuel mixture, they have to be carefully controlled and metered so as not to affect the performance of the engine. This is the job of the positive crankcase ventilation (PCV) valve. At idle, when the air/fuel mixture is very critical, just a little of the vapors are allowed in to the intake system. At high speed when the mixture is less critical and the pressures in the engine are greater, more of the vapors are allowed to enter the intake system. When the valve or the system is clogged, vapors will back up into the air filter housing or at worst, the excess pressure will push past seals and create engine oil leaks. If the wrong valve is used or the system has air leaks, the engine will idle rough, or (at worse), engine oil will be sucked out of the engine.

EGR Valve - The purpose of the Exhaust Gas Recirculation valve (EGR) is to meter a small amount of exhaust gas into the intake system; this dilutes the air/fuel mixture so as to lower the combustion chamber temperature. Excessive combustion chamber temperature creates oxides of nitrogen, which is a major pollutant. While the EGR valve is the most effective method of controlling oxides of nitrogen, in its very design it adversely affects engine performance. The engine was not designed to run on exhaust gas. For this reason the amount of exhaust entering the intake system has to be carefully monitored and controlled. This is accomplished through a series of electrical and vacuum switches and the vehicle computer. Since EGR action reduces performance by diluting the air/fuel mixture, the system does not allow EGR action when the engine is cold or when the engine needs full power.

Evaporative Controls - Gasoline evaporates quite easily. In the past, these evaporative emissions were vented into the atmosphere (.20% of all HC emissions from the automobile are from the gas tank). In 1970 legislation was passed, prohibiting venting of gas tank fumes into the atmosphere. An evaporative control system was developed to eliminate this source of pollution. The function of the fuel evaporative control system is to trap and store evaporative emissions from the gas tank and carburetor. A charcoal canister is used to trap the fuel vapors. The fuel vapors adhere to the charcoal, until the engine is started, and engine vacuum can be used to draw the vapors into the engine, so that they can be burned along with the fuel/air mixture. This system requires the use of a sealed gas tank filler cap. This cap is so important to the operation of the system, that a test of the cap is now being integrated into many state emission inspection programs. Pre-1970 cars released fuel vapors into the atmosphere through the use of a vented gas cap. Today with the use of sealed caps, redesigned gas tanks are used. The tank has to have the space for the vapors to collect so that they can then be vented to the charcoal canister. A purge valve is used to control the vapor flow into the engine. The purge valve is operated by engine vacuum. One common problem with this system is that the purge valve goes bad and engine vacuum draws fuel directly into the intake system. This enriches the fuel mixture and will foul the spark plugs. Most charcoal canisters have a filter that should be replaced periodically. This system should be checked when fuel mileage drops.

Air Injection  - Since no internal combustion engine is 100% efficient, there will always be some unburned fuel in the exhaust. This increases hydrocarbon emissions. To eliminate this source of emissions an air injection system was created. Combustion requires fuel, oxygen and heat. Without any one of the three, combustion cannot occur. Inside the exhaust manifold there is sufficient heat to support combustion. If we introduce some oxygen, than any unburned fuel will ignite. This combustion will not produce any power, but it will reduce excessive hydrocarbon emissions. Unlike in the combustion chamber, this combustion is uncontrolled, so if the fuel content of the exhaust is excessive, explosions that sound like popping will occur. There are times when under normal conditions, such as deceleration, when the fuel content is excessive. Under these conditions we would want to shut off the air injection system. This is accomplished through the use of a diverter valve, which instead of shutting the air pump off diverts the air away from the exhaust manifold. Since all of this is done after the combustion process is complete, this is one emission control that has no effect on engine performance. The only maintenance that is required is a careful inspection of the air pump drive belt.